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Introduction

n viewing M. C. Escher’s lithograph
IAscending and Descending shown on

the front cover, we see monks plod-
ding up and down an endless staircase—
each monk will ultimately arrive at the
place where he began his impossible
journey. Our perceptual system insists
on this interpretation, even though we
know it to be incorrect. The lithograph
was inspired by the endless staircase
devised by Lionel Penrose and his son
Roger Penrose,' a variant of which is
shown in Fig. 1. Our visual system opts for a simple interpre-
tation based on local relationships within the figure, rather
than choosing a complex, yet correct, interpretation that
takes the entire figure into account. We observe that each
stair that is one step clockwise from its neighbor is also one
step downward, and so we perceive the staircase as eternally
descending. In principle, we could instead perceive the figure
correctly as depicting four sets of stairs that are discontinu-
ous, and viewed from a unique perspective—however such a
percept never occurs.

This paper explores an analogous set of auditory figures
that are composed of patterns that appear to ascend or
descend endlessly in pitch. Here also, our perceptual system
opts for impossible but simple interpretations, based on our
perception of local motion in a particular direction—either
upward or downward. These sound patterns are not mere
curiosities; rather they provide important information con-
cerning general characteristics of pitch perception.

Pitch as a two-dimensional attribute
By analogy with real-world staircases, pitch is often viewed
as extending along a one-dimensional continuum of pitch

Fig. 1. An impossible staircase, similar to one devised by Penrose and Penrose.'
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“The phenomenon of pitch
circularity has implications
for our understanding of
pitch perception, as well
as for musical composition

and performance.”

height. For sine waves, any significant
increase or decrease in frequency is
indeed associated with a corresponding
increase or decrease in pitch—this is con-
sistent with a one-dimensional represen-
tation. However, musicians have long
acknowledged that pitch also has a circu-
lar dimension, known as pitch class—
tones that stand in octave relation have a
certain perceptual equivalence. The sys-
tem of notation for the Western musical
scale accommodates this circular dimen-
sion. Here a note is designated by a letter
which refers to its position within the octave, followed by a
number which refers to the octave in which the tone occurs. So
as we ascend the scale in semitone steps, we repeatedly traverse
the pitch class circle in clockwise direction, so that we play C,
C#, D, and so on around the circle, until we reach C again, but
now the note is an octave higher. Similar schemes are used in
Indian musical notation, and in those of other musical cultures.

To accommodate both the rectilinear and circular
dimensions of pitch, a number of theorists—going back at
least to Drobisch in the mid-nineteenth century—have
argued that this be represented as a helix having one com-
plete turn per octave, so that pairs of points that are separat-
ed by an octave stand in close spatial proximity (Fig. 2).
Based on such a representation, Roger Shepard, then at Bell
Telephone Laboratories, conjectured that it might be possible
to exaggerate the dimension of pitch class and minimize the
dimension of height, so that all tones that are related by
octaves would be mapped onto a single tone which would
have a well-defined pitch class but an indeterminate height.
Because the helix would then be collapsed into a circle, judg-
ments of relative pitch for such tones should be completely
circular.”’

Using a software program for music synthesis generated
by Max Mathews,* Shepard synthesized a bank of complex
tones, each of which consisted of 10 partials that were sepa-
rated by octaves. The amplitudes of the partials were scaled
by a fixed, bell-shaped spectral envelope, so that those in the
middle of the musical range were highest, while the ampli-
tudes of the others fell off gradually along either side of the
log frequency continuum, sinking below the threshold of
audibility at the extremes (Fig. 3). Such tones are well defined
in terms of pitch class (C, C#, D; and so on) but poorly
defined in terms of height, since the other harmonics that
would provide the usual cues for height attribution are miss-
ing. Using such a bank of tones, one can then vary the dimen-
sions of height and pitch class independently. To vary height
alone one can keep the partials constant but rigidly shift the
spectral envelope up or down in log frequency; to vary pitch
class alone one can rigidly shift the partials in log frequency,
while keeping the position of the spectral envelope constant.
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Fig. 2. The helical model of pitch. Musical pitch is depicted as varying along both a
linear dimension of height and also a circular dimension of pitch class. The helix
completes one full turn per octave, so that tones that stand in octave relation are in
close spatial proximity, as shown by D#, D#, and D#.”

To demonstrate that such tones have circular properties
when the position of the spectral envelope remains fixed,
Shepard presented listeners with ordered pairs of such tones,
and they judged for each pair whether it formed an ascend-
ing or a descending pattern. When the tones within a pair
were separated by a small distance along the pitch class circle,
judgments of relative height were determined entirely by
proximity. As the distance between the tones increased, the
tendency to follow by proximity lessened, and when the tones
were separated by a half-octave, averaging across pitch class-
es and across a large group of subjects, ascending and
descending judgments occurred equally often.’

Shepard then employed such a bank of tones to produce
an intriguing demonstration: When the pitch class circle is
repeatedly traversed in clockwise steps, one obtains the
impression of a scale that ascends endlessly in pitch: C#
sounds higher than C; D as higher than C#, D# as higher than
D; A# as higher than A; B as higher than A#; C as higher than
B; and so on endlessly. One such scale is presented in Sound
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Fig. 3. Spectral representation of Shepard’s algorithm for generating pitch circular-
ity. Circularity is obtained by rigidly shifting the partials up or down in log fre-
quency, while the spectral envelope is held fixed. As examples, the red lines represent
partials at note C, and the blue lines represent partials at note C#. Adapted from
Shepard.’
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Demonstration 1 (See Sidebar). When the circle is traversed
in counterclockwise steps, the scale appears to descend end-
lessly instead. This pitch paradox has been used to accompa-
ny numerous videos of bouncing balls, stick men, and other
objects traversing the Penrose staircase, with each step
accompanied by a step along the Shepard scale.

Jean-Claude Risset has produced remarkable variants of
this illusion, using the same basic principle.>* One set of vari-
ants consists of endlessly ascending and descending glissan-
di. Sound Demonstration 2 presents an example. In other
variants, the dimensions of pitch height and pitch class are
decoupled by moving the position of the spectral envelope in
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the direction opposite that of movement along the pitch class
circle.>® For example, the spectral envelope could be contin-
uously rising, while the tones traverse the pitch class circle in
counter-clockwise direction, so that the listener perceives a
sequence that both ascends and descends at the same time.
Risset has incorporated many of such glides into his compo-
sitions, with striking artistic effect. For example, he employed
an endlessly descending glissando in the incidental music to
Pierre Halet’s Little Boy. This play portrays the nightmare of
a pilot who took part in the destruction of Hiroshima, and
the descending glide symbolizes the falling of the atomic
bomb.

Circularities based on spectral proximity

For Shepard tones, there are two ways to interpret the
perceptual tendency to form relationships based on pitch
proximity. One possibility is that we invoke proximity along
the pitch class circle, which is illustrated in Fig. 2. Another
possibility is that we connect together the individual partials
of the successive tones based on their proximity along the fre-
quency continuum, as illustrated in Fig. 3. That spectral fac-
tors alone can produce circularity effects was demonstrated
by Jean-Claude Risset>* when he produced endlessly ascend-
ing and descending glissandi consisting of tone complexes
whose partials stood in ratios other than an octave. An
experimental demonstration of this spectral proximity effect
was later produced by Edward Burns, who created banks of
tones whose partials were separated by various ratios, rang-
ing from 6 to 16 semitones. He found essentially no differ-
ence in circularity judgments depending on whether octave
ratios were involved.” Other research demonstrating the con-
tribution of spectral proximity to pitch circularity has been
carried out by Ryunen Teranishi,® and by Yoshitaka Nakajima
and his colleagues.’

Pitch circularities in musical practice

Although stark pitch circularities were not created until
exact control of acoustic parameters became possible in the
mid-twentieth century, overall impressions of pitch circular-
ity have been generated by composers from the Renaissance
onward.” English keyboard music of the sixteenth century,
such as composed by Orlando Gibbons, included clever
manipulations of tone sequences in multiple octaves so as to
create circular effects. In the eighteenth century, J. S. Bach
was strikingly effective in devising passages that gave circular
impressions, most famously in his organ Prelude and Fugue in
E minor.

In the early twentieth century, Alban Berg produced an
effect that approached that of circularity generated by
Shepard tones. In his 1925 opera Wozzeck, Berg employed a
continuously rising scale that was orchestrated in such a way
that the upper instruments faded out at the top of their range
while the lower instruments faded in at the low end. Other
twentieth century composers such as Bela Bartok and Gyorgy
Ligeti orchestrated sequences that gave rise to circular
impressions. In particular, Jean-Claude Risset has made
extensive use of circular configurations in his orchestral
works; for example in his piece Phases he orchestrated circu-
lar configurations using harps, celesta, strings, percussion,
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and brass.

Twentieth century electroacoustic music has also
employed circular effects. These occur, for example, in
Risset’s Mutations 1; James Tenny’s For Ann (rising),
Karlheinz Stockhousen’s Hymnen, and the Beatle’s A Day in
the Life (Sergeant Pepper). Recently, Richard King, sound
designer for the Batman movie The Dark Knight, employed
an ever-ascending glide for the sound of Batman’s vehicle, the
Batpod. Explaining his use of this sound in the Los Angeles
Times, King wrote: “When played on a keyboard, it gives the
illusion of greater and greater speed; the pod appears unstop-
pable”™

Towards circular banks of musical instrument tones

To achieve pitch circularity, must our choice of musical
material be confined to highly artificial tones, or to several
instrument tones playing simultaneously? Alternatively,
might it be possible to create circular scales from sequences
of single tones, with each tone comprising a full harmonic
series? If this could be achieved, then the theoretical implica-
tions of pitch circularity would be broadened. Furthermore,
this would open the door to creating circular banks of tones
derived from natural instruments, which would expand the
scope of musical materials available to composers and per-
formers.

Arthur Benade stated that a good flautist, while playing
a sustained note, can smoothly vary the amplitudes of the
odd numbered harmonics relative to the even-numbered
ones, so as to produce an interesting effect.” Suppose he
begins with a note at FO = 440 Hz; the listener hears this as
Concert A, well defined in both pitch class and pitch height.
If the flautist then alters his manner of blowing so as to pro-
gressively reduce the amplitudes of the odd harmonics rela-
tive to the even ones, the listener will at some point realize
that he is no longer hearing Concert A, but rather the A an
octave higher (corresponding to FO = 880 Hz). Yet the tran-
sition from the lower to the higher octave can appear quite
smooth. Based on this observation, one can surmise further
that a tone consisting of a full harmonic series might be made
to vary continuously in height between octaves without nec-
essarily traversing the path specified by the helical model, but
rather by traversing a straight path upwards or downwards in
height—for example between D# and D# in Fig. 2. Pitch
might then be represented as a solid cylinder rather than a
helix. Sound Demonstration 3 presents a harmonic complex
tone with FO = 440 Hz, in which the odd harmonics are grad-
ually reduced relative to the even ones, so that the perceived
height of the tone moves smoothly up an octave.

In an experiment by Roy Patterson and his colleagues, a
set of tones was employed, each of which consisted of the
first 28 harmonics, and in which the relative amplitudes of
the odd and even harmonics were varied. The subjects’ task
was to judge the octave in which each tone occurred.
Averaging the results across subjects, when the odd har-
monics were 27 dB lower than the even ones, listeners
judged the tones to be an octave higher; at smaller amplitude
discrepancies, averaged judgments of height fell between the
higher and lower octaves."

Given these findings, I surmised that one might be able
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Fig. 4. Algorithm for producing pitch circularity employed by Deutsch." The graphs
show the progression of the relative amplitudes of Harmonics 1 and 2, Harmonics 3
and 4, and Harmonics 5 and 6, as FO moves upward from the ‘tonic’ of the scale.
See text for details. Reprinted from Deutsch, Dooley, and Henthorn."

to generate circular banks of tones by systematically varying
the relative amplitudes of the odd and even harmonics.”* We
can begin with a bank of twelve tones, each of which consists
of the first six components of a harmonic series, with FOs
varying over an octave in semitone steps. For the tone with
highest FO the odd and even harmonics are equal in ampli-
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Fig. 5. Subjects were presented with pairs of tones created using the algorithm by
Deutsch," and they judged whether each tone pair rose or fell in pitch. The graph
plots the percentages of judgments based on pitch class proximity, as a function of
distance between the tones within a pair along the pitch class circle. Adapted from
Deutsch, Dooley, and Henthorn.'

tude. Then for the tone with FO a semitone lower, the odd
harmonics are reduced in amplitude relative to the even ones,
so raising the perceived height of the tone. Then for the tone
with FO another semitone lower, the odd harmonics are fur-
ther reduced in amplitude, so raising the perceived height of
the tone to a greater extent. We continue moving down the
octave in semitone steps, reducing the amplitudes of the odd-
numbered harmonics further with each step, until for the
lowest FO the odd-numbered harmonics no longer contribute
to perceived height. The tone with the lowest FO is therefore
heard as displaced up an octave, and so as higher in pitch
than the tone with the highest FO—and pitch circularity is
thereby obtained.

After some trial and error, I settled on the parameters
shown in Fig. 4. Complex tones consisting of the first six har-
monics were employed, and the amplitudes of the odd-num-
bered harmonics were reduced by 3.5 dB for each semitone
step down the scale; therefore for the tone with lowest FO the
odd harmonics were 38.5 dB lower than the even ones. To
achieve this pattern for harmonic pairs 1 and 2, and harmon-
ic pairs 3 and 4, the even numbered harmonics were at a con-
sistently high amplitude, while the odd numbered harmonics
decreased in amplitude as FO descended. To obtain the same
pattern of relationship for harmonic pairs 5 and 6, harmonic
5 was consistently low in amplitude while harmonic 6
increased in amplitude as the scale descended.

In a formal experiment to determine whether such a
bank of tones—hereafter referred to as a scale—would
indeed be perceived as circular, my colleagues Trevor
Henthorn, Kevin Dooley and I created two such scales;" for
one scale the lowest FO was A, and for the other the lowest FO
was F#,. (For want of a better word, we refer to the tone with
the lowest FO as the tonic of the scale) For each scale, each
tone was paired with every other tone, both as the first and
the second tone of a pair, and subjects were asked to judge for
each pair whether it rose or fell in pitch.

We found that judgments of these tones were over-
whelmingly determined by proximity along the pitch class

Pitch Circularity
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Fig. 6. Multidimensional scaling solutions produced from the relative pitch judgments of tones created using the
algorithm of Deutsch,' made by an individual subject. The plot on the left shows the solution for tones in the scale
based on the A4 tonic, and the plot on the right shows the solution for tones in the scale based on the F#4 tonic.

Adapted from Deutsch, Dooley, and Henthorn.'®

circle.' Figure 5 shows the percentages of judgments that
were in accordance with proximity, for both scales, and aver-
aged across all subjects. As can be seen, when the tones with-
in a pair were separated by a semitone, proximity determined
their judgments almost entirely. As with Shepard’s experi-
ment on octave-related complexes, as the tones within a pair
were separated by a larger distance along the pitch class cir-
cle, the tendency to follow by proximity lessened. And even
when the tones were separated by almost a half-octave, the
tendency for judgments to follow the more proximal rela-
tionship was very high. When we subjected the data to
Kruskal’s nonmetric multidimensional scaling, we obtained
strongly circular solutions, as illustrated in those from an
individual subject shown in Fig. 6. We also created sound
demonstrations based on this algorithm. These included
endlessly ascending and descending scales moving in semi-
tone steps, and endlessly ascending and descending glissandi,
and are presented as Sound Demonstrations 4 - 7.

The finding that circular scales can be obtained from full
harmonic series leads to the intriguing possibility that this
algorithm could be used to transform banks of natural
instrument tones so that they would also exhibit pitch circu-
larity. William Brent, then a graduate student at the
University of California, San Diego music department, has
shown that such transformations can indeed be achieved. He
used bassoon samples taken from the Musical Instrument
Samples Database at the University of Iowa Electronic Music
Studios, ranging in semitone steps from D#2 to D3. Using
continuous overlapping Fourier analysis, he transformed the
sounds into the frequency domain, and there reduced the
amplitudes of the odd harmonics by 3.5 dB per semitone step
downward. He then performed inverse Fourier transforms to
generate the altered waveforms in the time domain. Circular
banks of bassoon tones were thereby produced.” Endlessly
ascending and descending scales employing these tones are
presented as Sound Demonstrations 8 and 9.

It remains to be determined which types of instrument
sound can be transformed so as to acquire this property.
However, Brent has also achieved some success with flute,
oboe, and violin samples, and has shown that the effect is not
destroyed by vibrato. The Digital Signal Processing (DSP)
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module to produce these transformations was created for the
Pd Programming environment,”™ " so that composers and
performers can now begin to experiment with this algorithm
live and in real time, as well as in recording contexts.

Hypothesized neuroanatomical substrates

What do we know about the neuroanatomical substrates
underlying the circular component of pitch? An interesting
study by J. D. Warren and colleagues sheds light on this issue."
These researchers used functional magnetic resonance imag-
ing (fMRI) to explore patterns of brain activation in response
to two types of tone sequence. In the first type, the harmonic
components of the tones were at equal amplitude, but FO was
varied, so that pitch class and pitch height varied together. In
the other type of sequence, pitch class was kept constant but
the relative amplitudes of the odd and even harmonics were
varied, so that only differences in pitch height were produced.
Presentation of the first type of sequence resulted in activation
specifically in an area anterior to the primary auditory cortex,
while the second type of sequence produced activation prima-
rily in an area posterior to this region. Based on these findings,
the authors concluded that the circular component of pitch is
represented in the anterior region.

Pitch circularity might, however, have its origins earlier
in the auditory pathway. Gerald Langner has provided evi-
dence in the gerbil that the ventral nucleus of the lateral lem-
niscus is organized in terms of a neuronal pitch helix, so that
pitches are arranged in helical fashion from top to bottom
with one octave for each turn of the helix.” This indicates
that the lateral lemniscus might be the source of the circular
component, and that it is further represented in the cortex.

A paradox within a paradox

There is an additional twist to the paradox of pitch cir-
cularity. We have seen that when listeners are presented with
ordered pairs of tones that are ambiguous with respect to
height, they invoke proximity along the pitch class circle in
making judgments of relative pitch. But we can then ask what
happens when a pair of such ambiguous tones is presented
which are separated by a half-octave (or tritone) so that the
same distance along the circle is traversed in either direction.



For example, what happens when the pattern C-F# is pre-
sented? Or the pattern A#-E? Since proximity cannot then be
invoked, will such judgments be ambiguous, or will some-
thing else occur?

I conjectured that for such patterns, the auditory system
would not settle for ambiguity, but would instead make refer-
ence to the absolute positions of the tones along the pitch
class circle, so that tones in one region of the circle would be
heard as higher and tones in the opposite region as lower.
This conjecture was confirmed in a series of experiments
employing Shepard tones consisting of six octave-related
components, with tones within a pair generated under the
same spectral envelope.” The experimental design controlled
for sources of artifact—for example tones were generated
under envelopes that were placed in different positions along
the spectrum. ***** Judgments of relative pitch were found
to depend in an orderly fashion on the positions of the tones
along the pitch class circle.

Another and entirely unexpected finding also emerged
from these studies—the orientation of the pitch class circle
with respect to height varied strikingly across listeners. For
example, some subjects would hear the tone pair D-G# (and
C#-G, and D#-A) as ascending, whereas others would hear the
same patterns as descending. Then the first set of subjects
would hear the tone pair G#-D (and G-C#, and A-D#) as
descending while the second set of subjects would hear these
patterns as ascending. Such individual differences can be easi-
ly demonstrated by presenting the four tritone pairs in Sound
Demonstration 10 to a group of listeners, and asking them to

respond with a show of hands whether each tone pair ascend-
ed or descended in pitch. This demonstration is particularly
striking when played to a group of professional musicians, who
are quite certain of their own judgments and yet recognize that
others are obtaining entirely different percepts.

In other experiments, R. Richard Moore, Mark Dolson
and I studied two-part melodic patterns composed of the
same octave-related complexes, and found that judgments
here also depended on the positions of the tones along the
pitch class circle.”** In general, the tritone paradox and relat-
ed paradoxes formed of two-part patterns show that while
pitch height and pitch class are in principle separate dimen-
sions, one dimension can influence the other.

Summary and conclusions

The phenomenon of pitch circularity has implications
for our understanding of pitch perception, as well as for
musical composition and performance. It is likely to intrigue
acousticians, mathematicians, and musicians for many years
to come. The experiments and sound demonstrations
described here indicate that the classical definition of pitch as
“that attribute of auditory sensation in terms of which sounds
may be ordered on a scale extending from high to low” ¥
should be amended to include the circular dimension also.
The experimental decoupling of the linear and circular com-
ponents of pitch provides a useful tool for the further inves-
tigation of the neural underpinnings of these two compo-
nents, which are presumably processed separately at some
stage in the auditory system. For musicians the development
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of new software that largely decouples pitch class and pitch
height, and does so in real time, has opened up intriguing
new avenues for composition and performance.AT
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